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Solar system with different scales for distance and 
for size: presents role of giant planets



CATASTROPHIC METEORITE IMPACTS ON EARTH

THE ULTIMATE IN COLD CASE INVESTIGATIONS

▸ The history of life on Earth punctuated by extinction events 

▸ What are probable causes and how can we identify the correct 
one? Are we at risk?  

▸ What does this have to do with computers? And how is this 
connected to the Earth’s origin and evolution? 

▸ Computer application of laws of physics to identify what 
happens 

▸ Advanced physics-theory to explain why/how often it happens
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MAJOR IMPACT EVENTS HELPED DEFINE EARTH HISTORY

CHELYABINSK METEOR 20 METER DIAMETER 20 KM/S (40,000 MPH)
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SPECIES OVER TIME SHOWING SUDDEN DROPS: DATA = EVIDENCE

GEOLOGIC TIME SCALE PUNCTUATED BY MASS EXTINCTIONS
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MORE ACCURATE DEPICTION OF ROLE OF EXTINCTION EVENTS

GEOLOGIC TIME SCALE PUNCTUATED BY MASS EXTINCTIONS
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METEORITIC IMPACTS RESULTED IN 5 MAJOR SPECIES EXTINCTION EVENTS

GEOLOGIC TIME SCALE PUNCTUATED BY MASS EXTINCTIONS
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CATASTROPHIC METEORITE IMPACTS ON EARTH

POSSIBLE EXPLANATIONS FOR EXTINCTIONS 

▸ Explanations must explain event occurring everywhere on 
Earth (and in oceans, lakes) during a relatively well-defined 
time, and have a viable causal agent 

▸ Rules out viral mechanisms (different species, etc.), 
volcanism (requires trigger over many continents), … 

▸ Massive meteoritic impact events… We have found 
evidence (Chixulub crater off Yucatan peninsula), Iridium 
deposits at 65 Ma (million year) level + fossil record age
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INTRODUCTION

GIANT PLANET SHIELDING: MYTH OR FACT

▸ Astronomical folklore: Jovian planets, by virtue of their size 
and gravitational attraction, shield the inner solar system 
from collisions with outer solar system material 
(planetesimals) 

▸ Wetherill (1994) developed a computer method to study 
the interaction of planetesimals with the Jovian planets 
exploiting a clever approximate description 

▸ Öpik developed an approximation to describe 
gravitational interaction subject to a special condition 
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A LITTLE HISTORY

▸ Primitive computer method seemed to show that 
astronomical intuition was right… 

▸ Less than 1% of outer solar system objects hurled into inner 
solar system crossing Earth’s orbit 

▸ But more accurate investigations (7 digit accuracy) proved 
otherwise? Around 15% of “planetesimals” made  it…. 

▸ And we’re still here attending this meeting 

▸ What’s going on?
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WETHERILL’S AND OTHER RESULTS

SIMULATION RESULTS
▸ Wetherill showed that the current Jovian planet configuration prevents 99 - 

99.9% of planetesimals from entering the inner solar system and crossing 
terrestrial planet orbits using Öpik approximation without checking validity 

▸ Horner & Jones (2008) employed more accurate simulations in related 
problems; found potential for terrestrial planet collisions  

▸ Newman, Sharp, & Grazier (2014) showed that 60% of Wetherill’s 
planetesimal orbits are invalid; 15% of planetesimals enter inner solar 
system, confirmed by Grazier (2015)
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TEXT

UNCOVERING THE MYSTERY…

▸ Make computer algorithms much more accurate and 
include gravitational influence of Earth and Mars 

▸ Look for actual impacts, not just planetesimals crossing our 
orbit; misses, fortunately, do not count 

▸ Requires we understand a little bit about the orbits of 
comets and asteroids, as well as how they are affected by 
the Gas Giants or Jovian planets
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OUR COMPUTATIONAL RESULTS

JOVIAN PLANETS, MARS, EARTH, PLUS 500,000 PLANETESIMALS

▸ We add two terrestrial planets into orbit computation for giant 
planets with much more accurate algorithm (11 digit accuracy) 

▸ We confirmed our earlier finding that approximately 15% of 
planetesimals originating in the outer solar system are deflected into 
the inner solar system 

▸ However, we discovered that only 1 in 105 planetesimals will collide 
with Earth or Mars over 108 years (loosely conforms with related 
calculations by Horner & Jones) 

▸ Fundamental question is why so few collisions? Was Wetherill right 
for unexpected reasons?
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GEOMETRY OF ELLIPSES AND KEPLER’S FIRST LAW

KEPLER MYSTICALLY (CONICS) SUGGESTED ELLIPTICAL ORBIT 

▸ Kepler (1609) made claim (First 
Law), but he verified (before 
Galileo and telescopes!) 

▸ Elliptical shape requires calculus, 
but an elementary school student 
can do it with tacks and string 

▸ Major and minor axis of lengths     
a (1+e) and a (1-e): simple algebra, 
not rocket science!
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TWO BODY DYNAMICS

PLANETESIMAL ORBITS IN THE SOLAR SYSTEM

‣ Simplest description: 
planetesimal follows Kepler’s 
laws relative to the sun; first 
law with ellipse/focus 

▸ Semi-major axis a and 
eccentricity e with primary 
focus at sun; inclination i of 
orbital plane relative, e.g., to 
Sun-Jupiter orbital plane; a, 
e, and i remain constant
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TEXT

A QUANTITATIVE DETECTIVE STORY

▸ Employ “data mining” on orbit calculations performed 
when a planetesimal crosses Earth’s orbit 

▸ Look for unexpected patterns and found two 

▸ Semi-major axis a (related to energy of orbiting particle) 
substantially reduced 

▸ Eccentricity e of orbit substantially increased, 
guarantying (skipping details) that planetesimal will 
spend most of its time in outer solar system
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DATA MINING FROM 108 YR SIMULATION WITH 105 PLANETESIMALS

INITIAL AND FINAL (AT CROSSING) ORBITAL PARAMETERS
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DATA MINING FROM 108 YR SIMULATION WITH 104 PLANETESIMALS

INITIAL AND FINAL (AT CROSSING) ORBITAL PARAMETERS

▸ With 1,546 planetesimals out of 10,000 crossing the Earth’s 
orbit (15%), we observe that all of them have their semi-major 
axes reduced and almost all of them have their eccentricities 
increased; other simulations with 5 x 105 planetesimals 

▸ All perihelia a (1 - e) < RE (Earth orbit crossers) but aphelia  
a (1 + e) are in Jovian planet zones; Kepler’s 2nd law (equal 
areas in equal times) guarantees these planetesimals spend 
most of their time in the outer solar system subject to ejection 
by giant planets 

▸ Why, though, do we have systematic drops in a and jumps in e?
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JUPITER CONTROLS OUTER SOLAR SYSTEM

▸ Kepler’s picture based on object orbiting the sun with no 
external influence 

▸ Jupiter has 0.1% mass of the sun but has strong influence; “3-
body” problem of Sun-Jupiter-comet addressed over a century 
by Hamilton, Jacobi, Tisserand, and Poincaré 

▸ Hill’s curves (in Sun-Jupiter rotating frame) shows how particles 
can be trapped (Lagrange points) 

▸ Tisserand showed that a and e no longer independent, due to 
Jupiter, but connected via a formula he developed
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THREE-BODY DYNAMICS

HILL’S CURVES: TRANSITIONING FROM 2 TO 3 BODIES
▸ Sun at the origin, Jupiter is at 1 (RJ); 

planetesimal orbits near sun 
bounded by circles and are 
individually Keplerian 

▸ Coordinates rotate over 11.82 yr; 
MSun = 1,048 MJ, MJ = 318 ME  

▸ Further out, Jupiter’s gravity alters 
picture; Lagrange points, periJovian 
orbits, etc., with complex trajectories  

▸ Still further out, orbits resume 
Keplerian flavor bounded by circles
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THREE BODY DYNAMICS

F.F. TISSERAND’S CRITERION
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J = R
a +2 a

R 1−e2
⎛
⎝⎜

⎞
⎠⎟
cos i( )

▸ When mass of planet relative to sun is small, 
Jacobi constant J can be accurately 
approximated by  
 
 
 
a = semi-major axis  
e = eccentricity  
i = inclination (near 0°)  
R = radial distance to planet; 
a and e can vary, but J preserved for 3-body 



THREE BODY DYNAMICS

TISSERAND’S DATA FOR JUPITER-RELATED COMETS

▸ From vol. IV, page 
205 of Tisserand’s 
Traité de 
Mécanique Céleste 

▸ Formula major tool 
in 3-body problem 
dynamics for 
comets 

▸ Apply to simulation
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THREE BODY DYNAMICS: DUE TO JUPITER OR SATURN

TISSERAND CRITERION: JUPITER OR SATURN?

▸ Calculate Tisserand 
parameter J for simulation 
results at time of Earth 
orbit crossing 

▸ Should be around 3 for 
planet associated with 
“three body” problem 

▸ Almost all planetesimals 
controlled by Jupiter at 
that instant
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FOUR BODY DYNAMICS

JUPITER GOVERNS, BUT SATURN PERTURBS

▸ Saturn behaves as though it is an external “shepherd,” 
concept familiar to us from planetary ring dynamics 

▸ Planetesimals interior to Saturn’s orbit can lose energy to 
Saturn, when closer to it than Jupiter, and become more 
tightly bound; perturbation also influences J 

▸ Repeated interactions with Saturn will steadily reduce a 
planetesimal’s semi-major axis
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CARTOON DEPICTING ROLE OF SATURN V. JUPITER
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When a planetesimal is closer to Saturn than to
Jupiter, Saturn will serve as a “shepherd” for the
planetesimal’s orbit driving it inward.
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OUTER SOLAR SYSTEM FACTS AND FIGURES

JUPITER 317.8, SATURN 95.2, URANUS 14.6, NEPTUNE 17.2 (MEARTH)
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SHEPHERDING ON A COSMIC SCALE

TINY OBJECTS INTERACTING WITH PLANETARY SATELLITES

▸ If inside satellite’s 
orbit, object moves 
faster and loses 
energy (“dynamical 
friction”) and 
becomes more 
tightly bound (pulled 
in) 

▸ If outside satellite’s 
orbit, get pushed out
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SHEPHERDING IN SATURNIAN SYSTEM AND F-RING FORMATION 27



SHEPHERDING COMMON IN SOLAR SYSTEM DYNAMICS

CREATES GAPS BETWEEN SATURNIAN RINGS; 
RELATED RESONANCE EFFECTS PRODUCE 
KIRKWOOD GAPS IN ASTEROID BELT

28



FOUR BODY DYNAMICS: EVIDENCE OF SHEPHERDING EFFECT FROM SATURN

JUPITER GOVERNS BUT SATURN PERTURBS

▸ Since Jupiter’s mass is 3.34 
that of Saturn, expect that 
gravitational perturbation 
will only occur when 
planetesimal is much 
closer to Saturn than to 
Jupiter or  DS < DJ 

▸ Demonstrated in figure; 
showing J for Jupiter and 
DS - DJ after 106 years
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FOUR BODY DYNAMICS

JUPITER GOVERNS BUT SATURN PERTURBS

▸ Three body description with Jupiter and constant 
Tisserand parameter J obeyed most of the time  

▸ Relatively close approach by planetesimal to Saturn results 
in more tightly bound orbit, so semi-major axis a drops 

▸ When a drops, eccentricity e increases; well-known result 
due to Dermott & Murray (1981) for shepherding 

▸ Exchanging roles of Jupiter and Saturn in this “four body 
scenario” provides analytic basis for simulation results
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DISCUSSION AND CONCLUSIONS

▸ Wetherill (1994) employed Öpik approximation to show 
that 99 – 99.9% of outer solar system planetesimals would 
be prevented from entering inner solar system 

▸ Recent studies showed that around 15% of planetesimals 
are injected into the inner solar system 

▸ We have shown that they develop smaller semi-major axes 
but higher eccentricities leading to continued long 
residence times in the outer solar system and ejection
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DISCUSSION AND CONCLUSIONS (CONT.)

▸ We find that only 1 planetesimal in 105 will collide with Earth; 
important in understanding our impact (including extinction) 
history as well as delivery of volatiles from outer solar system 

▸ Arguably, similar mechanisms applied in the early solar system 
inasmuch as Jupiter and Saturn were likely present due to 
instabilities resulting in their formation 

▸ This helps explain the non-existence (Boehnke et al., 2016) of a 
Late Heavy Bombardment; injected planetesimals were not 
sufficiently long-lived in the inner solar system to have much of 
an impact
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